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Damping mechanisms, damping rates and the dissipative modal structure of internal
waves in stratified rotating circular basins are investigated analytically. The damping
is shown to be due to a combination of the internal-wave cancelling, where waves
emitted by the oscillatory boundary layers destructively interact with the parent wave
and drain energy from it, and spin-down modified by the periodicity, where the energy
is drained by the sinks and sources at the bottom corner caused by a discontinuity in
the Ekman transport. It is shown that super-inertial Poincaré waves and sub-inertial
Kelvin waves are damped predominantly by the internal-wave cancelling and modified
spin-down, respectively. These processes also modify the internal-wave structure; for
super-inertial waves, the boundary-layer-generated waves intensify the interior flow
in the lower part of the water column and delay the phase relative to the isopycnal
displacements, but for sub-inertial waves, the Ekman pumping and the corner sinks
and sources add a horizontal circular flow that slants the crest and trough backwards
near the wall.

1. Introduction
This study is motivated by fast damping of internal waves observed in a strongly

stratified rotating lake, where the dominant basin-scale internal waves were damped
within a few periods (e-folding time in terms of amplitude) (Shimizu & Imberger
2008) unlike laboratory experiments by Wake, Ivey & Imberger (2005), who reported
the damping over 10–14 periods. Analysing the energy balance, bottom friction
was considered as the primary cause of the damping (Shimizu & Imberger 2008).
In stratified lakes, the effect of bottom friction is confined to a relatively thin,
well-mixed bottom boundary layer (Wüest, Piepke & Van Senden 2000; Lemckert
et al. 2004), and the interior remains close to laminar (Saggio & Imberger 2001);
however, the momentum defect (and energy loss) occurring in the boundary layer
must be transferred back into the stratified interior in which most of the momentum
(and energy) is stored. Diffusion cannot transfer momentum within a time scale of
a few days in a lake with a typical depth of 100 m. In this paper, we investigate
damping of basin-scale internal waves by thin boundary layers; two well-known
damping mechanisms are combined to understand the observed rapid damping. First,
the damping mechanism investigated by Johns (1968) and Dore (1968) is relevant
for relatively high-frequency basin-scale waves, and second, the well-known spin-
down (Greenspan 1968; Pedlosky 1979; Gill 1982) applies to steady circulations and
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low-frequency motions, such as shelf waves and Kelvin waves (Romea & Allen 1984;
Mitsudera & Hanawa 1988).

These two limiting problems have already been well studied. If the wave frequency
is much higher than the inertial frequency, then the basin-scale internal wave in a
rotating basin degenerates into a simple internal seiche. Such waves are damped by
the viscosity of the fluid acting in a thin layer underneath the surface, in the interior
of the fluid and in a thin boundary layer adjacent to the solid walls of the basin;
the damping rates are proportional to ν3/2, ν and ν1/2, respectively (e.g. Ursell 1952),
indicating that damping due to bottom friction dominates in shallow basins (e.g.
LeBlond 1966). The damping rate is most conveniently calculated by dividing the rate
of energy dissipation in these thin layers by the total energy of the basin-scale seiches
(e.g. Lamb 1932; Ursell 1952). However, how the energy of the basin-scale waves
is actually siphoned from the waves into the thin boundary layers is rather subtle.
To understand this mechanism, it is necessary to carry out a perturbation analysis
assuming small viscosity as discussed by Johns (1968). Assuming progressive surface
waves with the angular frequency ω, he showed that surface waves locally support,
to first order, a Stokes layer at the bottom boundary. However, spatial variability of
the flow causes the Stokes layer to have a variable thickness and induces a vertical
velocity anomaly at the top of the bottom boundary layer, given by

wE =

√
ν

iω
(∇ · v), (1.1)

where wE is the velocity anomaly normal to the boundary; i =
√

−1 is the imaginary
unit; ν is the kinematic viscosity; ∇ is the spatial gradient operator parallel to the
boundary; and v is the interior velocity vector parallel to the boundary. The velocity
anomaly may be represented by a line of sinks and sources that, at second order,
generate gravity waves similar to that illustrated by Hurley & Imberger (1969) when
an incident internal wave travels across small bottom undulations. Johns (1968)
illustrated that using (1.1) as a bottom boundary condition induces a damping rate
proportional to ν1/2. His method was extended to progressive internal waves in
rotating fluids by Dore (1968), and Mei & Liu (1973) further showed that the velocity
anomaly creates an energy flux into the boundary layer.

On the other hand the spin-down of a steady circulation or very low-frequency
motions in a rotating basin is achieved by the Ekman pumping stretching (or
squashing) the water column and inducing circular flow that cancels the existing
circulation through the conservation of potential vorticity (e.g. Greenspan 1968;
Benton & Clark 1974; Duck & Foster 2001). Spin-down induces fast damping
(∝ ν1/2), compared to damping due to diffusion of momentum, the rate of which is
proportional to ν (Benton & Clark 1974; Duck & Foster 2001). The Ekman pumping
velocity can be calculated by the Ekman compatibility condition (Greenspan 1968):

wE =

√
ν

2f
(∇ × v), (1.2)

where wE is the Ekman pumping velocity and f is the Coriolis parameter or inertial
frequency (twice the angular velocity of the basin). In a stratified fluid, the motion in
the interior is not completely brought to rest by such a mechanism, as the stratification
prevents the Ekman transport from moving up or down the vertical sidewall boundary
layer; a diffusion mechanism is required to complete the damping (Benton & Clark
1974; Duck & Foster 2001).
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Low-frequency motions such as shelf waves and Kelvin waves are spun-down by
the same mechanism, although the unsteady inertia slightly modifies the process
(Gill 1982). For a flat-bottomed basin, the compatibility condition extended to low-
frequency motions is given by (Gill 1982)(

∂2

∂t2
+ f 2

)
wE =

∂

∂t
(∇ · τ ) + f (∇ × τ ), (1.3)

where τ is the bottom-shear-stress vector.
Interestingly, if we note that the bottom shear stress under the Stokes and Ekman

boundary layers is
√

iνωv and
√

νf/2v, respectively, (1.3) reduces to (1.1) and (1.2) in
the high- and low-frequency limits. This suggests that damping of rotating basin-scale
internal waves may possibly be modelled by coupling the velocity anomaly at the top
of the boundary layers with the interior wave motion; the damping mechanism would
then be the combination of the internal-wave cancelling and spin-down. Brink (1988)
applied (1.3) to super-inertial gravity waves, although his solution was confined to
progressive super-inertial gravity waves.

This study is aimed at obtaining an understanding of the fundamental processes that
determine the observed damping rates of rotating basin-scale internal waves. In order
to better illustrate the damping mechanisms, we limit our analysis to a flat-bottomed
basin with vertical walls and constant rotation, containing a weakly stratified fluid (in
the Boussinesq sense) with constant small viscosity. The solution is obtained through
a perturbation analysis, assuming that the rotation rate is finite and the viscosity is
small (e.g. van Dyke 1964). Strictly speaking, this approach has limited applicability
to variable bottom basins because, when viscosity is zero, they support singular wave
structures (wave attractors) in addition to regular standing wave modes (e.g. Maas &
Lam 1995). However, the singular wave structures tend to become regular (singular
modes) and to be damped faster than the standing wave modes as viscosity increases
(Dintrans, Rieutord & Valdettaro 1999). In fact, both field data and three-dimensional
numerical simulations have shown resonant responses of internal waves with distinct
frequencies and structures in lakes (e.g. Hodges et al. 2000; Antenucci & Imberger
2003; Shimizu & Imberger 2008). Therefore, it is more relevant to use internal-wave
solutions with distinct frequencies and continuous structures to obtain a fundamental
understanding of damping mechanisms of internal waves in real lakes.

The paper is structured as follows. First, we derive the dynamics of the oscillatory
boundary layers on the flat bottom and the vertical sidewall in a stratified rotating
basin. Then, a perturbation method is developed that incorporates the velocity
anomaly at the top of the boundary layers (hereafter referred to as the Ekman
normal velocity) as a boundary condition into the basin-scale internal waves in the
basin’s interior. Next, the resulting perturbation method is applied to a non-rotating
rectangular basin to illustrate the internal-wave-cancelling concept, and then this is
generalized to the case in which both the internal-wave cancelling and spin-down
contribute to the damping. The limitation and possible extension of the method
proposed in this paper are discussed at the end.

2. Governing equations and scaling
Consider the damping of small-amplitude basin-scale internal waves in a shallow

basin having vertical sidewalls and rotating parallel to the vertical axis with an angular
frequency f/2 (f is assumed positive throughout this paper). Let z be the upward
coordinate, with origin at the water surface, and x and y be horizontal coordinates
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fixed to the rotating frame of reference. In order to separate the hydrostatic pressure
field from the solution, we set the density and pressure such that

ρ∗(x∗, t∗) = ρ∗
0 + ρ∗

e (z
∗) + ρ ′∗(x∗, t∗), (2.1a)

p∗(x∗, t∗) = p∗
e (z

∗) + p′∗(x∗, t∗), (2.1b)

where x = (x, y, z) is the Cartesian coordinate vector; t is the time; ρ is the density;
and p is the pressure. Variables with the subscripts 0 and e represent a nominal value
and vertical variations at equilibrium, respectively. The prime on a variable denotes
variation due to the motion, and ∗ in the superscript indicates a dimensional variable.
Substituting (2.1) into the Navier–Stokes equations, subtracting the hydrostatic
pressure balance and assuming that the stratification is weak (ρ ′∗, ρ∗

e � ρ∗
0 ) and

that the fluid has a constant kinematic viscosity ν, and diffusivity of mass κ , the
governing equations for the wave motion become

∇ · v∗ = 0, (2.2a)

∂ρ ′∗

∂t∗ + v∗ · ∇ρ ′∗ =
ρ∗

0

g
N∗2w∗ + κ∇2ρ ′∗, (2.2b)

∂v∗

∂t∗ + v∗ · ∇v∗ = − 1

ρ∗
0

∇p′∗ − f (k̂ × v∗) − g

ρ∗
0

ρ ′∗ k̂ + ν∇2v∗, (2.2c)

where k̂ is the vertical unit vector; v = (u, v, w) is the velocity vector; g is the
acceleration due to gravity;

N∗(z∗) =

√
− g

ρ∗
0

∂ρ∗
e

∂z∗ (2.3)

is the buoyancy frequency; and ∇ is the spatial differential operator.
Further, we assume that the basin-scale internal waves have an angular frequency

O(ω0) and a small isopycnal displacement O(a0). The basin is assumed to have
a flat bottom, vertical sidewalls and a depth H that is small compared to the
horizontal length scale L but large compared to a0. The basin is assumed filled with a
continuously stratified fluid with a typical buoyancy frequency N0. Given these scales,
we may introduce the following non-dimensional variables:

(x, y, z) =

(
x∗

L
,
y∗

L
,
z∗

H

)
, (2.4a)

(u, v, w) =

(
u∗

a0ω0

,
v∗

a0ω0

,
w∗

a0ω0A

)
, (2.4b)

t = ω0t
∗, (2.4c)

N =
N∗

N0

, (2.4d)

where the scale for the vertical velocity was determined by balancing the terms in
(2.2a) and A= H/L is the aspect ratio of the basin, assumed to be small. Substituting
(2.4) into (2.2b, c) and balancing the unsteady terms with the first term on the right-
hand side in (2.2b) and the pressure term in (2.2c) requires the density and pressure
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to be non-dimensionalized as follows:

ρ ′ =
gρ ′∗

ρ∗
0N

2
0 a0A

, (2.5a)

p′ =
p′∗

ρ∗
0a0ω

2
0L

. (2.5b)

Given our assumption that A � 1 and a0 � H , it follows that a0/L � 1, and so the
nonlinear terms in (2.2) that are O(a0/L) may be neglected. With this assumption,
(2.2a, c) becomes

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.6a)

∂ρ ′

∂t
= N2w +

E

PrS

[
A2

(
∂2ρ ′

∂x2
+

∂2ρ ′

∂y2

)
+

∂2ρ ′

∂z2

]
, (2.6b)

∂u

∂t
= −∂p′

∂x
+

1

S
v +

E

S

[
A2

(
∂2u

∂x2
+

∂2u

∂y2

)
+

∂2u

∂z2

]
, (2.6c)

∂v

∂t
= −∂p′

∂y
− 1

S
u +

E

S

[
A2

(
∂2v

∂x2
+

∂2v

∂y2

)
+

∂2v

∂z2

]
, (2.6d)

A2 ∂w

∂t
= −∂p′

∂z
− B

S2
ρ ′ +

EA2

S

[
A2

(
∂2w

∂x2
+

∂2w

∂y2

)
+

∂2w

∂z2

]
, (2.6e)

where E = ν
(
f H 2

)−1
is the Ekman number; S = f −1ω0 is the Burger number;

B = f −2N2
0 A2 is the stratification parameter; and Pr = ν/κ is the Prandtl number. The

terms O(A2) are retained as they enter the force balance in the sidewall boundary lay-
ers, discussed later. Note that the parameter (E/S) is ν(ω0H

2)−1 and independent of f .
Note that the angular frequency of basin-scale internal waves are O(C/L), where

C is the celerity of internal wave of interest (see § 4.1 for calculation of C); so S may
also be defined as C(f L)−1 (see also Antenucci & Imberger 2001; Stoker & Imberger
2003). Note also that the second term on the right-hand side of (2.6e) has to be O(1)
for internal waves, implying B = O(S2). Assuming small viscosity and a shallow basin,
we consider the parameter ranges (E/S) � 1, A � 1 and B = O(S2) in this paper. It
is assumed that the axis of rotation is parallel to the vertical in the above equations,
but the results are also applicable when the axis of rotation is tilted, provided that
(A/S) � 1 and that the axis of rotation is not too close to the horizontal.

3. Ekman normal velocities induced by oscillatory boundary layers
By way of introduction, we shall consider the boundary layer formed on the flat

bottom and the plane vertical sidewall forced by basin-scale internal waves. The
solutions may be applied locally to curved sidewalls in a circular basin assuming the
boundary layer is thin compared to the radius of curvature.

3.1. Bottom boundary layer

In order to focus on an oscillatory boundary layer on a flat bottom, we stretch the
vertical coordinate and vertical velocity so that we get a balance between the vertical
diffusion terms in (2.6c, d ) and the unsteady terms; Z = (E/S)−1/2(z + 1), and (2.6a)
implies W =(E/S)−1/2w. Substituting the stretched variables into (2.6e) and neglecting
all terms smaller than or equal to O([E/S]1/2) shows that the pressure does not vary
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across the bottom boundary layer, and the flow in the bottom boundary layer is,
to first order, horizontal. In order to simplify the solution process, it is convenient
to consider the deviation of boundary-layer velocity from the far-field value (i.e.
the Ekman velocity; Gill 1982), such as uE = u − uI , where the subscripts E and I

represent the Ekman and far-field values, respectively. We seek a periodic solution of
the form

ϕ (x, t) = ϕ (x) eiωt , (3.1)

where ϕ represents any of the variables and ω is the angular frequency of the parent
wave in the interior (determined in § 4.1) and is assumed to scale with ω0. Here ϕ, on
the right-hand side, is a complex variable, and the conjugate is omitted for simplicity.
The conjugate solution appears naturally in the derivation below, as internal-wave
modes occur as conjugate pairs (see (4.12)). Assuming such a solution exists and
neglecting all terms smaller than or equal to O([E/S]1/2), (2.6c, d ) leads to the
following expressions for the Ekman velocities:

iωuE =
1

S
vE +

∂2uE

∂Z2
, iωvE = − 1

S
uE +

∂2vE

∂Z2
. (3.2)

Note that pressure terms do not appear explicitly, as the pressure gradient balances
with the unsteady inertia and the Coriolis forces based on the far-field velocities. The
no-slip condition at the bottom requires

(uE, vE) = − (uI , vI ) at Z = 0, (3.3)

and the Ekman velocity must vanish away from the bottom so the velocity in the
boundary layer matches the far-field velocity,

(uE, vE) = (0, 0) at Z → ∞, (3.4)

leading to the following solution (see Defant 1961 and the references therein):

uE = −1

2
[(e−β−Z + e−β+Z)uI − i(e−β−Z − e−β+Z)vI ], (3.5a)

vE = −1

2
[(e−β−Z + e−β+Z)vI + i(e−β−Z − e−β+Z)uI ], (3.5b)

where β± =
√

i(ω ± S−1). The solution represents two counter-rotating components
with different vertical scales, |ω + S−1|−1/2 and |ω − S−1|−1/2, for the cyclonic (rotating
in the same direction as the basin) and anticyclonic components, respectively (Defant
1961; Mofjeld 1980). When the frequency is much higher than the inertial (or S 
 1),
the solution reduces to the Stokes oscillatory boundary layer, whereas when the
frequency is much lower than the inertial (or S � 1), it reduces to the Ekman layer
(figure 1). The horizontal Ekman transport, qEx and qEy (scales with [νω0]

1/2 a0), is
obtained by vertically integrating (3.5a, b):

qEx =
iωγbl + S−1γbt

ω2 − S−2
uI +

S−1γbl − iωγbt

ω2 − S−2
vI , (3.6a)

qEy =
iωγbl + S−1γbt

ω2 − S−2
vI − S−1γbl − iωγbt

ω2 − S−2
uI , (3.6b)

where

γbl =
1

2
(β− + β+), γbt =

i

2
(β− − β+). (3.7)
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Figure 1. The Ekman velocities (uE, vE) when (uI , vI ) = (1, 0) and t = 0 (see (3.5)). Profiles
(a)–(i ) correspond to Sω = f −1ω∗ = 0.30, 0.70, 0.90, 0.99, 1.00, 1.01, 1.10 and 3.00 with 1.5
offset for each profile. Profiles (a) and (i ) are almost identical to the Ekman layer and
Stokes layer, respectively. Note the sharp transition of the structure near Sω = 1.00.
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Figure 2. The Ekman transport in the rotating bottom boundary layer, (qEbx, qEby), and
sidewall boundary layer, qEwy , when (uI , vI ) = (1, 0). (a) Real part (in phase with the far-field
flow) and (b) imaginary part (quarter-period ahead of the far-field flow). In (b), the solid and
dashed lines coincide for S|ω| < 1.

The Ekman transport becomes large and exhibits a jump in phase when the frequency
is equal to the inertial frequency (figure 2). The Ekman normal velocity may be
obtained by vertically integrating the Ekman part of (2.6a) and substituting (3.6a, b)
into the equation, yielding

wE = −
(

E

S

)1/2 [
iωγbl + S−1γbt

ω2 − S−2

(
∂uI

∂x
+

∂vI

∂y

)
+

S−1γbl − iωγbt

ω2 − S−2

(
∂vI

∂x
− ∂uI

∂y

)]
(3.8)

3.2. Sidewall boundary layer

It is known that a sidewall boundary layer, forced by gravity waves, is the Stokes
layer (e.g. Ursell 1952), but when the flow becomes steady, it becomes the sidewall
boundary layers derived by Stewartson (1957) and Barcilon & Pedlosky (1967a, b)
depending on relative strength of the stratification. Here we investigate the sidewall-
boundary-layer structure induced by rotating basin-scale internal waves when the
no-slip boundary condition is imposed at the vertical-wall face. The coordinate x is
taken as positive into the fluid. In order to balance the unsteady terms in (2.6d ) with
the diffusion terms normal to the wall, we stretch x using the Stokes-layer thickness as
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X = (E/S)−1/2 A−1x, and conservation of volume (2.6a) implies U = (E/S)−1/2 A−1u.
As already discussed, the factor (E/S) is independent of f . Substituting these stretched
variables and neglecting terms smaller than or equal to O([E/S]1/2) and O(A2), (2.6a–
e) becomes

∂U

∂X
+

∂v

∂y
+

∂w

∂z
= 0, (3.9a)

iωρ ′ = N2w +
1

Pr

∂2ρ ′

∂X2
, (3.9b)

0 = −∂p′

∂X
+

E1/2A

S3/2
v, (3.9c)

iωv = −∂p′

∂y
− E1/2A

S3/2
U +

∂2v

∂X2
, (3.9d)

0 = −∂p′

∂z
− B

S2
ρ ′. (3.9e)

Equation (3.9c) indicates that the Coriolis force modifies the pressure across the
boundary layer, whenever E1/2AS−3/2 = (ω3/2

0 L)−1ν1/2f ≈ 1. In what follows, we make
the assumption that

EA2 � S3, (3.10)

so that the pressure deviation from the equilibrium is constant across the layer. In
order to solve (3.9a–e), we once again split the flow into the far-field flow and its
deviation (i.e. vE = v − vI , wE = w − wI , ρ ′

E = ρ ′ − ρ ′
I ). As the pressure deviation is

constant across the layer and the interior pressure gradients in y and z balance with
the unsteady inertia and gravity in the far field, (3.9e) implies ρ ′

E =0, and together
this yields wE = 0 from (3.9b). From this it follows that we only need to consider
horizontal motion along the vertical wall, governed by (3.9d ). The solution to the
Ekman part of (3.9d ) with the boundary conditions

vE = −vI at X = 0, (3.11a)

vE = 0 as X → ∞ (3.11b)

is given by the Stokes-oscillatory-boundary-layer solution (e.g. Pedlosky 1979). The
Ekman transport and Ekman normal velocity may be calculated by integrating the
solution across the boundary layer. Using (3.9a), this yields

qEy =
iγsw

ω
vI , qEz = 0, (3.12)

uE = −
(

E

S

)1/2

A
iγsw

ω

∂vI

∂y
, (3.13)

where qEz is the vertical Ekman transport and

γsw =
√

iω. (3.14)

Although the vertical sidewall boundary layer does not support the vertical Ekman
transport when the fluid is stratified, horizontal divergence of the Ekman transport
does induce an Ekman normal velocity. Unlike in the bottom boundary layer, the
Ekman transport in the vertical sidewall boundary layer does not show any transition
at the inertial frequency (figure 2). It is important to note that although stratification
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does not appear in the boundary-layer solution explicitly, it suppresses the vertical
motion in the sidewall boundary layer.

3.3. Bottom-corner region

An important implication of the above results is that the horizontal bottom Ekman
transport (qEx in (3.6a) with uI =0 and vI �= 0) cannot simply enter the vertical
sidewall boundary layer, as, from (3.12b), qEz = 0 there. As in the stratified spin-down
problems, the horizontal bottom Ekman transport must somehow be communicated
into the interior to satisfy the conservation of mass (e.g. Walin 1969; Benton & Clark
1974). The bottom-corner region effectively acts as the sinks and/or sources of fluid
for the interior flow (see e.g. figures 2 and 5 in Walin 1969). In our case, the sinks
and sources are oscillating in time, which may induce source flow when the frequency
is low as in stratified spin-down (Walin 1969) but may emit internal-wave rays when
the frequency is higher than the inertial frequency (Lighthill 1978; Gill 1982). It
is not easy to obtain analytical solutions for the flow details in the corner region
(Walin 1969); however, considering the limiting case of small viscosity (E/S → 0),
the width of the corner region become infinitely small (except when ω is very close
to but above S−1), as shown in appendix D. This indicates that the sinks and sources
may be conveniently modelled using the Dirac delta function δ representation as
suggested by Spence, Foster & Davis (1992) and Duck & Foster (2001). As the
sidewall boundary layer does not support the Ekman transport (see (3.12)) and the
fluid is incompressible, the additional vertical Ekman normal velocity at the bottom
corner must be equal to the horizontal Ekman transport at the corner, determined
from (3.6a) by setting uI = 0:

wE =

(
E

S

)1/2
S−1γbl − iωγbt

ω2 − S−2
vI δ (x) . (3.15)

We use this representation to obtain analytical solutions and to illustrate the roles of
the corner sinks and sources. This treatment is rather qualitative, and the length scale
of the sinks and sources may need to be accounted for, particularly when internal-wave
rays are emitted from the corner region. (Otherwise the interior solutions may become
singular). Qualitatively, this may be achieved by terminating a series expansion at the
wavenumber corresponding to the length scale of the sinks and sources (Walin 1969).
Note that the Ekman velocity affects the interior flow only as a volume source, not
as a momentum source.

4. Perturbation analysis of damped internal waves
We employ a perturbation analysis to obtain a solution for damped internal waves

as suggested by Greenspan (1968), Johns (1968) and Duck & Foster (2001); viscosity
is assumed small so that it affects the solution only through the Ekman normal
velocities. The solution method exploits the orthogonality of the three-dimensional
normal modes that make up the inviscid solution of (2.6); the orthogonality is derived
in appendix A. Similar methods have been used to calculate damped coastal trapped
waves by Brink & Allen (1978), Brink (1982) and Clarke & Van Gorder (1986). The
derivation below, given in Cartesian coordinates, is valid for basins of any arbitrary
horizontal shape provided that the following conditions are met: the bottom is flat;
the sidewall is vertical; and the assumptions we have made so far are satisfied.

Consider a basin-scale internal wave with the angular frequency ω as a solution to
(2.6). Neglecting the diffusion terms and the terms O(A2), (2.6b) and (2.6e) may be
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combined to yield

0 = −iω
∂p′

∂z
− BN2

S2
w. (4.1)

Deleting w from the above equation and (2.6a) yields

−iω
∂

∂z

(
S2

BN2

∂p′

∂z

)
= −

(
∂u

∂x
+

∂v

∂y

)
. (4.2)

Assuming small displacement at the surface, the surface boundary condition may be
assumed to be given by

p′ =
c2
0w

iω
= − c2

0S
2

BN2

∂p′

∂z
at z = 0, (4.3)

where c0 is the celerity for surface waves and (4.1) is used to relate w with p′. The
boundary conditions at the bottom and sidewall are determined by the Ekman normal
velocities as

−iω
S2

BN2

∂p′

∂z
= wE at z = −1, (4.4a)

un̂x + vn̂y = −uEn at the sidewall, (4.4b)

where (n̂x, n̂y) is the horizontal unit outward normal vector at the vertical sidewall;
wE is obtained from (3.8) and (3.15); and uEn is the Ekman normal velocity, normal
to the sidewall, equal to uE in (3.13). In order to take advantage of the orthogonality
of the inviscid modes later, we add (4.2) and (4.4a) multiplied by δ (z + 1). Then,
following Platzman (1972) and Shimizu, Imberger & Kumagai (2007), we write the
resulting equation with (2.6c, d ) as a matrix equation:

ωMξ = Kξ + fb, (4.5a)

ξ =

⎛
⎝p′

u

v

⎞
⎠, (4.5b)

fb = −i

⎛
⎝δ (z + 1) wE

0
0

⎞
⎠, (4.5c)

M =

⎛
⎜⎝−

[
∂
∂z

+ δ (z + 1)
] (

S2

BN2
∂
∂z

)
0 0

0 1 0
0 0 1

⎞
⎟⎠, (4.5d)

K = i

⎛
⎜⎝

0 ∂
∂x

∂
∂y

∂
∂x

0 − 1
S

∂
∂y

1
S

0

⎞
⎟⎠. (4.5e)

We solve the above equation for (p′, u, v) with the boundary conditions (4.3) and (4.4)
by expanding the variables in a perturbation series in the small parameter (E/S).
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4.1. Inviscid interior solutions

Using vertical modes, the homogeneous solutions to (4.5) may be written as (e.g. Gill
1982)

ξ̃
(0)

(l,m) =

⎛
⎜⎜⎝

p̃′(0)

(l,m) (x, y, z)

ũ
(0)
(l,m) (x, y, z)

ṽ
(0)
(l,m) (x, y, z)

⎞
⎟⎟⎠ = φl (z)

⎛
⎜⎝

c2
l η(l,m) (x, y)

u(l,m) (x, y)

v(l,m) (x, y)

⎞
⎟⎠, (4.6)

where the superscript 0 is used to denote inviscid modes; l and m in the subscript
denote lth vertical and mth horizontal modes; φl denotes the vertical modes in a
continuously stratified fluid; η(l,m) represents horizontal variation of the pressure and
u(l,m) and v(l,m) represent horizontal variations of velocities; and cl is the celerity of
lth vertical mode (non-dimensionalized by Lω0). The surface mode is given by l = 0,
and l > 0 represent internal-wave modes.

The vertical modes φl and their associated celerities cl are determined from the
solution of (e.g. Gill 1982)

c2
l

∂

∂z

(
S2

BN2

∂φl

∂z

)
+ φl = 0 (4.7)

with the boundary conditions

c2
0S

2

BN2

∂φl

∂z
+ φl = 0 at z = 0, (4.8a)

∂φl

∂z
= 0 at z = −1. (4.8b)

The vertical modes satisfy the orthogonality condition (e.g. Gill 1982)∫ 0

−1

φpφldz = ρKE(l)δp,l, (4.9)

where δi,j (=1 if i = j but 0 otherwise) is the Kronecker delta and ρKE(l) (scales with
ρ∗

0H ) is the arbitrary normalization factor for lth vertical mode.
The horizontal modal structures or eigenfunctions, (η(l,m), u(l,m), v(l,m)), are

determined from the shallow-water equations corresponding to individual vertical
modes (e.g. Gill 1982),

iω(0)
(l,m)η(l,m) = −

(
∂u(l,m)

∂x
+

∂v(l,m)

∂y

)
, (4.10a)

iω(0)
(l,m)u(l,m) = −c2

l

∂η(l,m)

∂x
+

1

S
v(l,m), (4.10b)

iω(0)
(l,m)v(l,m) = −c2

l

∂η(l,m)

∂y
− 1

S
u(l,m), (4.10c)

with the boundary condition

u(l,m)n̂x + v(l,m)n̂y = 0 at the sidewall. (4.11)

The solutions represent the horizontal modes that have a distinct horizontal
modal structure, (η(l,m), u(l,m), v(l,m)), and an angular frequency ω

(0)
(l,m) (Proudman

1929; Platzman 1972; Shimizu et al. 2007). The solutions occur in conjugate pairs
unless ω

(0)
(l,m) = 0. We designate a solution with positive angular frequency with
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a plus sign in the subscript, (ω(0)
(l,+m), η(l,+m), u(l,+m), v(l,+m)), and its conjugate pair,

(ω(0)
(l,−m), η(l,−m), u(l,−m), v(l,−m)), with a minus sign. The relationship between the two is

given by (Platzman 1972)(
ω

(0)
(l,+m), η(l,+m), u(l,+m), v(l,+m)

)
=
(
−ω

(0)
(l,−m), η̄(l,−m), ū(l,−m), v̄(l,−m)

)
, (4.12)

where the overbar stands for the complex conjugate; if the subscript does not have
a plus or minus sign, then the relationship applies to both the modes. Distinction
between +m and −m modes is necessary when the horizontal modes are used for
a series expansion (Platzman 1984; see (4.17)). Equation (4.10b, c) suggests that cl

should be O(1) for the wave of interest, as we are interested in internal gravity waves
influenced by rotation. Therefore, we hereafter set ω0 = L−1C, where C is the celerity
of the wave of interest.

The three-dimensional modes satisfy the general orthogonality relationships of the
form (see (A 11)) ∫ (

ξ̃
(0)

(p,q)

H

M ξ̃
(0)

(l,m)

)
dV = ẽ(l,m)δp,lδq,m, (4.13a)∫ (

ξ̃
(0)

(p,q)

H

K ξ̃
(0)

(l,m)

)
dV = ω

(0)
(l,m)ẽ(l,m)δp,lδq,m, (4.13b)

where ξ , M and K are defined in (4.5); H in the superscript stands for conjugate
transpose; dV = dx dy dz is the volume element; p and q in the subscript are modal
indices that are independent of l and m; and ẽ(l,m) (scaling with ρ∗

0HC2a2
0) is an

arbitrary normalization factor for the (l, m) mode. This is the norm that is equivalent
to twice the total energy of the mode (see (A 5) and (A 11)).

4.2. Correction to the inviscid basin-scale internal waves due to
boundary-layer presence

Since the Ekman normal velocities are O([E/S]1/2), we focus on one mode, say the
(l, m) mode, and look for small viscous corrections to the angular frequency and
modal structure. The variables in (4.3)–(4.5) may be expanded as a perturbation
series:

ω = ω
(0)
(l,m) + (E/S)1/2 ω

(1)
(l,m) + · · · , (4.14a)

ξ = ξ̃
(0)

(l,m) + (E/S)1/2 ξ̃
(1)

(l,m) + · · · , (4.14b)

uEn = ũ
(0)
En(l,m) + (E/S)1/2 ũ

(1)
En(l,m) + · · · , (4.14c)

wE = w̃
(0)
E(l,m) + (E/S)1/2 w̃

(1)
E(l,m) + · · · , (4.14d)

where the superscript 1 indicates first-order viscous correction and ũ
(0)
En(l,m) and w̃

(0)
E(l,m)

are determined from (3.8), (3.13) and (3.15) by setting (uI , vI ) = (ũ(0)
(l,m), ṽ

(0)
(l,m)). The

first-order correction to the modal frequency ω
(1)
(l,m) is a complex variable, the real

and imaginary parts of which give the first-order correction to the angular frequency
and the damping rate, respectively. Substituting the above expansions into (4.5) and
collecting the terms O([E/S]1/2), we get

ω
(1)
(l,m) M ξ̃

(0)

(l,m) + ω
(0)
(l,m) M ξ̃

(1)

(l,m) = K ξ̃
(1)

(l,m) + f̃
(0)

b(l,m), (4.15)
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where f̃
(0)

b(l,m) is determined by substituting w̃
(0)
E(l,m) into the definition given by (4.5c).

The boundary conditions, (4.3) and (4.4), become

p̃′(1)

(l,m) = − c2
0S

2

BN2

∂p̃′(1)

(l,m)

∂z
at z = 0, (4.16a)

−iω
S2

BN2

∂p̃′(1)

(l,m)

∂z
= w̃

(0)
E(l,m) at z = −1, (4.16b)

ũ
(1)
(l,m)n̂x + ṽ

(1)
(l,m)n̂y = −ũ

(0)
En(l,m) at the sidewall. (4.16c)

Since the inviscid solutions form a complete set of functions (see appendix A), the

first-order correction to the modal structure, ξ̃
(1)

(l,m), can be expressed as a superposition
of the inviscid modes:

ξ̃
(1)

(l,m) =

∞∑
s=0

+∞∑
t=−∞

ξ̃
(0)

(s,t)b̃(l,m)(s,t), (4.17)

where b̃(l,m)(s,t) is the ‘amplitude’ of the (s, t) mode contained in the first-order
correction to the (l, m) mode. Following Platzman (1984), the equations that determine
ω

(1)
(l,m) and b̃(l,m)(s,t) can be obtained as follows. First, we multiply (4.15) by the complex

conjugate of the modal-structure function of a particular inviscid mode, say the (p, q)
mode, and integrate the resulting equation over the basin, yielding

ω
(1)
(l,m)

∫ (
ξ̃

(0)

(p,q)

H

M ξ̃
(0)

(l,m)

)
dV + ω

(0)
(l,m)

∫ (
ξ̃

(0)

(p,q)

H

M ξ̃
(1)

(l,m)

)
dV

=

∫ (
ξ̃

(0)

(p,q)

H

K ξ̃
(1)

(l,m)

)
dV +

∫ (
ξ̃

(0)

(p,q)

H

f̃
(0)

b(l,m)

)
dV . (4.18)

Second, we integrate the first term on the right-hand side by parts, so that (see (A 8))∫ (
ξ̃

(0)

(p,q)

H

K ξ̃
(1)

(l,m)

)
dV = −i

∮∫ 0

−1

(
¯̃p′

(0)

(p,q)ũ
(0)
En(l,m)

)
dz ds +

∫ [(
K ξ̃

(0)

(p,q)

)H

ξ̃
(1)

(l,m)

]
dV,

(4.19)

where (4.16c) has been applied; ds is the length element along the sidewall; and the
integral in the first term on the right-hand side is taken along the sidewall. Further,

we expand ξ̃
(1)

(l,m) using (4.17) and then apply (4.13a) and the conjugate transpose of
(4.13b) to the left-hand side of (4.18) and the second term on the right-hand side of
(4.19), respectively, to get the equation

ω
(1)
(l,m) ẽ(l,m)δp,lδq,m +

(
ω

(0)
(l,m) − ω

(0)
(p,q)

)
ẽ(p,q)b̃(l,m)(p,q)

= −i

∮∫ 0

−1

(
¯̃p′

(0)

(p,q)ũ
(0)
En(l,m)

)
dzds +

∫ (
ξ̃

(0)

(p,q)

H

f̃
(0)

b(l,m)

)
dV . (4.20)

This equation may be decomposed into vertical modal components by substituting
(4.6) and using the orthogonality of the vertical modes, (4.9), yielding

ω
(1)
(l,m) ẽ(p,q)δp,lδq,m +

(
ω

(0)
(l,m) − ω

(0)
(p,q)

)
ẽ(p,q)b̃(l,m)(p,q)

= −ic2
pρKE(l)

∮ (
η̄(p,q)u

sw
En(l,m)

)
ds δp,l

−ic2
pφp (−1) φl (−1)

∫∫ [
η̄(p,q)

(
wwc

E(l,m) + w
sp

E(l,m)

)]
dx dy. (4.21)
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In the above equation, wiwc
E(l,m), w

sp

E(l,m) and usw
En(l,m) are the bottom and sidewall Ekman

normal velocities calculated from the compatibility conditions (3.8), (3.13) and (3.15):

wiwc
E(l,m) = −

iω(0)
(l,m)γbl + S−1γbt

ω
(0)
(l,m)

2 − S−2

(
∂u(l,m)

∂x
+

∂v(l,m)

∂y

)
, (4.22a)

w
sp

E(l,m) = −
S−1γbl − iω(0)

(l,m)γbt

ω
(0)
(l,m)

2 − S−2

×
[(

∂v(l,m)

∂x
−

∂u(l,m)

∂y

)
−
(
u(l,m)ŝx + v(l,m)ŝy

)
δ (x − xsw)

]
, (4.22b)

usw
En(l,m) = −A

iγsw

ω
(0)
(l,m)

(
∂u(l,m)

∂x
ŝx +

∂v(l,m)

∂y
ŝy

)
at the sidewall, (4.22c)

where (ŝx, ŝy) is the horizontal unit vector tangential to the sidewall (positive when
the wall is to the right) and xsw indicates the location of the sidewall. We have rather
arbitrarily split the bottom Ekman normal velocity into two parts, such that w

sp

E(l,m)

accompanies the sinks and sources at the bottom corner and wiwc
E(l,m) is independent

of it. As shown later, wiwc
E(l,m) and w

sp

E(l,m) are related to the internal-wave cancelling

and modified spin-down, respectively. Note that the integrals of wiwc
E(l,m) and w

sp

E(l,m)

over the basin vanish from the Gauss’s and Stokes’s theorems and the boundary
condition (4.11), meaning that the mass in the interior (hence in the boundary layer)
is conserved and that the sinks and sources at the corner are necessary to achieve this
balance.

Setting p = l and q = m in (4.21) yields an expression for ω
(1)
(l,m). Noting that ẽ(l,m) is

twice the total energy and that the left-hand side is the complex rate of work done
by the leading mode to the boundary layers (i.e. pressure times velocity normal to
the boundary), it is seen that (4.21) is similar to the energy damping-rate calculation
method (Lamb 1932) and the method suggested by Mei & Liu (1973), except that
(4.21) is applicable to rotating basins. This method is efficient in calculating ω

(1)
(l,m), as

it does not require knowledge about ξ̃
(1)

(l,m).

Taking p �= l or q �= m yields b̃(l,m)(p,q), and substituting the results back into (4.17)
and then into (4.14b) gives the modal-structure correction. Note that we have
b̃(l,m)(l,m) = 0 by keeping the norm (the same form as the integral in left-hand side
of (4.13a)) ∫ (

ξ̃ (l,m)

H
M ξ̃ (l,m)

)
dV , (4.23)

the same with and without the first-order corrections (e.g. Kalaba, Spingarn &
Tesfatsion 1981). Also note that there is always a possibility that b̃(l,m)(p,q) becomes

very large when ω
(0)
(l,m) ≈ ω

(0)
(p,q) (see (4.21)), as the higher horizontal, higher vertical

modes may have frequencies close to the leading wave in a continuously stratified
basin. This, however, may not occur in reality, as higher modes are more susceptible
to viscous damping in the interior, which is beyond the scope of the current analysis.
The convergence of the modal expansion (4.17) is slow, as this method expresses
velocities normal to the boundary by superposition of inviscid modes that themselves
have zero velocity normal to the boundary; the boundary condition is satisfied only
in an asymptotic sense, similar to the Fourier series reproducing discontinuities.
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5. Internal-wave cancelling in a flat-bottomed rectangular basin
First we illustrate, by way of example, damping by the internal-wave cancelling of a

vertical mode 1 basin-scale internal wave in a non-rotating rectangular basin of length
L and width W , filled with a linearly stratified fluid (i.e. N =1). Horizontal coordinates
x and y are taken in the longitudinal and transverse directions, respectively, and the
basin length is used as the horizontal length scale. Vertical modes were obtained by
solving (4.7) and (4.8). For a vertical mode 1 internal wave, C ≈ N0H/π, which yields
B ≈ π2S2. To illustrate the process, the sidewall boundary layers are neglected, and
only longitudinal oscillations are considered.

The horizontal modes for the longitudinal oscillations and the associated angular
frequencies are

η(l,m) = c−1
l cos(mπx), (5.1a)

u(l,m) = −i sin(mπx), (5.1b)

ω
(0)
(l,m) = clmπ, (5.1c)

where m is an integer other than 0. (Note that the modes with +m and −m form a
conjugate pair that satisfies (4.12).) The normalizing factors (4.13a) are

ẽ(l,m) = ρKE(l)Ah, (5.2)

where Ah = W/L is the horizontal aspect ratio of the basin. From (4.22a), the velocity,
given by (5.1b), induces an Ekman normal velocity

wiwc
E(l,m) = −

√
iω(0)

(l,m)η(l,m) (5.3)

at the top of the bottom boundary layer, where γbl =
√

iω(0)
(l,m) and γbt = 0 are used, as

the bottom boundary layer is a Stokes layer. Using (5.1)–(5.3), (4.21) becomes

ω
(1)
(l,m)δp,lδq,m +

(
ω

(0)
(l,m) − ω

(0)
(p,q)

)
b̃(l,m)(p,q) = i

√
iω(0)

(l,m)

f V
(p,l)

2
δq,±m, (5.4)

where δq,±m = 1 only if q = + m or − m and

f V
(p,l) =

φp (−1) φl (−1)

ρKE(p)

cp

cl

. (5.5)

Note that unlike a rectangular basin with a rigid lid, the natural frequencies and
modal structures were distinct due to the presence of the free surface (see (4.8a)),
making ω

(0)
(l,m) − ω

(0)
(p,q) non-zero except when (p, q) = (l, m).

Setting (p, q) = (l, m) in (5.4) gives ω
(1)
(l,m) that has a negative real part and positive

imaginary part of equal magnitudes, indicating the bottom boundary layer induces

retardation of the oscillation and damping. The damping is proportional to
√

ω
(0)
(l,m),

so that waves with higher frequencies are damped faster, but damping per period
is smaller for such waves. For linear stratification, there is no preferential damping
of particular vertical internal-wave modes, as (5.5) gives f V

(l,l) = 2 for all the vertical

modes. The homogeneous case may be recovered by setting C = (gH )1/2, φ0 (−1) = 1,
ρKE(0) = 1 and f V

(0,0) = 1; this damping rate agrees with the results by Hunt (1952) and
van Dorn (1966) in the shallow-water limit, after converting their spatial damping
rates to temporal damping rates.

The dissipative structure of the fundamental-mode internal wave may be calculated
by taking p �= l or q �= m to obtain b̃(l,m)(p,q) and substituting the results into (4.17).
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Figure 3. The internal-wave cancelling of the fundamental-mode internal wave in a linearly
stratified rectangular basin with N = 1 and B = π2S2. (a)–(c) Vertical profiles of the vertical
velocity w̃, horizontal velocity ũ and pressure p̃′, respectively. (d ) Time series of isopycnal
displacements η̃ = (iω)−1 w̃ and horizontal velocities ũ induced by inviscid and dissipative
modes at z = −0.75 with (E/S)1/2 = 0.05. (e) Time series of the first-order vertical velocity,
zeroth-order pressure and first-order vertical energy flux at z = −1. (f ) Staggered plot of
vertical energy flux in time and depth. (g) Temporally averaged vertical energy flux. All
variables at x = 0.25 are plotted.

(Note that both +m and −m modes must be included in the calculation.) The bottom
Ekman normal velocity excites different vertical modes, including the surface wave
modes, but with the same horizontal structure, as the expansion coefficients b̃(l,m)(p,q)

are non-zero for all p but only for q = ±m in (5.4). The first-order correction to the
vertical velocity is largest at the bottom and decreases towards the surface (figure 3a).
The associated horizontal velocity is unidirectional, being largest in the middle of
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the water column, which decreases the total (i.e. inviscid solution plus first-order
correction) horizontal velocity in the upper half of the water column but increases
it in the lower half (figure 3b). It also induces a phase delay to the velocity in the
lower part of the water column relative to the isopycnal displacement (figure 3d ). The
first-order correction to the pressure decreases the total pressure except in the lower
half of the water column away from the bottom (figure 3c).

The additional wave components, generated by the Ekman normal velocity,
destructively interact with the parent wave and extract energy from the water column.
To show this, we calculate the first-order vertical energy flux F̃

(1)
z(l,m) given by

F̃
(1)
z(l,m) = Re

(
p̃

(0)
(l,m)e

iω
(0)
(l,m)t

)
Re

(
w̃

(1)
(l,m)e

iω
(0)
(l,m)t

)
+Re

(
p̃

(1)
(l,m)e

iω
(0)
(l,m)t

)
Re

(
w̃

(0)
(l,m)e

iω
(0)
(l,m)t

)
. (5.6)

This vertical energy flux is oscillatory and downward due to the phase lag between
the pressure and vertical velocity (=270◦; figure 3e) being locked to the parent wave.
The phase between the vertical velocity and pressure changes vertically (figure 3a, c),
but the vertical energy flux is net negative throughout the water column (figure 3f, g).

6. Damping of internal waves in circular basins
Rotating basin-scale internal waves in a circular basin are damped both by the

internal-wave cancelling and modified spin-down. We consider a linearly stratified
fluid in a flat-bottomed circular basin with radius R. Cylindrical coordinates (r, θ, z)
are more appropriate for this geometry, and velocity components (u, v) are taken as
the radial and azimuthal components. The celerity scale and stratification are taken
as in the previous example.

The fundamental-mode Kelvin and Poincaré waves are primarily used to illustrate
the damping process and its effect on the frequencies and spatial structures of the
modes. These have distinct characteristics: Kelvin waves are cyclonic waves that
induce strong currents near the lateral boundary, whereas super-inertial anticyclonic
Poincaré waves are associated with strong currents in the middle of the basin (Csanady
1967; Antenucci & Imberger 2001; Stocker & Imberger 2003). We use the term Kelvin
wave for cyclonic waves that have super-inertial frequencies because the frequency and
structure changes continuously across the inertial frequency (Antenucci & Imberger
2001).

In a circular basin, all the horizontal modes, including those of basin-scale waves
and geostrophic modes (Proudman 1929), need to be included in any modal expansion
as in (4.17); the complete set of the modes are given in appendix B. As the horizontal
modes have radial and azimuthal modes, we rewrite (l, m) and (p, q) as (l, m, n)
and (p, q, n) in (4.21) and (4.22), where m and q are radial modal indices, and the
common azimuthal modal index n is used below, as integrals in (4.21) with different
azimuthal modal indices always vanish due to the orthogonality.

We rather arbitrarily split ω
(1)
(l,m,n) and b̃(l,m,n)(p,q,n) (hence p̃′(1)

(l,m,n), ũ
(1)
(l,m,n) and ṽ

(1)
(l,m,n))

such that

ω
(1)
(l,m,n) = ω

(1)iwc

(l,m,n) + ω
(1)sp
(l,m,n) + ω

(1)sw
(l,m,n), (6.1a)

b̃(l,m,n)(p,q,n) = b̃iwc
(l,m,n)(p,q,n) + b̃

sp

(l,m,n)(p,q,n) + b̃sw
(l,m,n)(p,q,n), (6.1b)

where the first, second and third terms on the right-hand side are the first-order
corrections due to wiwc

E(l,m,n), w
sp

E(l,m,n) and usw
En(l,m,n) in (4.22), respectively. Complete

expressions for ω
(1)
(l,m,n) and b̃(l,m,n)(p,q,n) are rather lengthy and are given in appendix C.
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Before discussing more general cases, we first consider the fundamental Kelvin wave
mode (m = + 1) in the high- and low-frequency limits. In order to take account of
the length scale of the corner sinks and sources qualitatively, the series expansion
(4.17) was terminated with the cutoff vertical wavenumber 0.5

√
(E/S)−1|ω − S−1|,

corresponding to twice the thicker component of the bottom boundary layer.
In the high-frequency limit (i.e. S−1 � ω

(0)
(1,+1,±1)), the fundamental Kelvin and

Poincaré wave modes reduce to non-rotating standing internal waves (Antenucci &
Imberger 2001), and both the bottom and sidewall boundary layers become Stokes

layers (therefore, γbl = γsw =
√

iω(0)
(1,+1,±1) and γbt = 0). The bottom boundary layer

damps the wave by the internal-wave cancelling in the same way as in rectangular
basins. Damping due to the sidewall boundary layer also occurs in the same way
except that the boundary-generated additional waves propagate horizontally and
reflect from the sidewalls, forming a standing wave pattern horizontally. The damping
rate is obtained by taking the limit S−1 � ω

(0)
(1,+1,±1) in (C1a, c) in appendix C:

ω
(1)
(1,±1,±1) = i

√
iω(0)

(1,±1,±1)

⎧⎨
⎩1

2
f V

(1,1) + A
1(

ω
(0)
(1,±1,±1)

2 − 1
)
⎫⎬
⎭ . (6.2)

The first and second terms are the contributions from the internal-wave cancelling
due to the bottom and sidewall boundary layers, respectively. The first term has
the same form as in rectangular basins (see (5.4)), and the second term is negligible
for shallow-water limit as A � 1. The result for a homogeneous water body may be
recovered by setting C = (gH )1/2, l = 0 and f V

(0,0) = 1 in (6.2), and this agrees with the
results previously obtained by Case & Parkinson (1957) and Mei & Liu (1973).

In the low-frequency limit (i.e. ω
(0)
(1,+1,±1) � S−1 provided that (3.10) is satisfied), the

bottom boundary layer becomes an Ekman layer (figure 1), and the damping is the
result of a process similar to spin-down (figure 4). A positive azimuthal velocity,
under the Kelvin wave crest, induces a negative radial Ekman transport (figure 4b,
d ) towards the centre of the basin. The negative gradient of the Ekman transport
causes an upward Ekman normal velocity at the bottom in addition to the sucking
of the interior fluid into the bottom boundary layer by the corner sink (figure 4e). As
in the spin-down problem for steady circulation, the Ekman normal velocity induces
a horizontal circular flow through extension and compression of the water column
(figure 4c); however, the maximum displacement is shifted by 90◦ compared to the
Ekman normal velocity. As a result, the additional circular flow does not cancel the
parent wave as in the spin-down, but it slants the crest and trough backwards near
the wall as in low-frequency frictional Kelvin waves along a straight wall (Mofjeld
1980; Martinsen & Weber 1981; Davey, Hsieh & Wajsowicz 1983) (figure 4a–c). The
downward sink flow is driven by a positive pressure, leading to a net downward
radially averaged energy flux throughout the water column (figure 4f, g). This is
a significant difference from the stratified spin-down of steady circulation, where
diffusion is required to damp the flow in the middle of the water column (Benton &
Clark 1974; Duck & Foster 2001). It is also interesting to note that the sinks and
sources at the corner are responsible for draining the energy from the interior at
z = −1; this drained energy is transported towards the centre of the basin in which
part of it is returned back into the interior and the rest dissipated within the boundary
layer. Although the process is not exactly the same as the spin-down of steady
circulation, we use the term spin-down for the process described above in this paper.
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Figure 4. Spin-down of the fundamental internal Kelvin wave mode with S = 0.1 in a linearly
stratified basin with N = 1 and B = π2S2. (a) Plane view of the dissipative modal structure
when (E/S)1/2 = 0.1. (b) The inviscid modal structure. (c) The first-order correction to the
modal structure. (d ) The radial Ekman transport along the solid line in (b). (e) Staggered
plot of the first-order vertical velocity along the vertical cross-section shown in (c) by the
solid line. (f ) Staggered plot of the temporally averaged first-order vertical energy flux. (g)
Temporally and radially averaged vertical energy flux. Shading and vector in (a)–(c) show the

isopycnal displacements η̃(1,+1,+1) = (iω(0)
(1,+1,+1))

−1w̃(1,+1,+1) and horizontal velocities (ũ(1,+1,+1),

ṽ(1,+1,+1)), respectively, at z = −0.75. The sidewall boundary layer is neglected to illustrate the
spin-down process. The shaded area corresponds to twice the thickness scale of the Ekman
layer. Approximately first 40 vertical modes of first 200 horizontal wave modes (including +
and − modes) and 100 horizontal geostrophic modes are summed for plotting purposes. The
solution within and slightly above the shaded area shows oscillations due to the termination
of the series expansion (see the text).

The damping rate in the low-frequency limit is obtained by taking the limit
ω

(0)
(1,+1,±1) � S−1 in (C 1b, c),

ω
(1)
(1,+1,±1) = if V

(1,1)

√
1

2S
± i

√
i√

ω
(0)
(1,+1,±1)

A

S
, (6.3)

noting that γbl = γbt =
√

S−1/2 in the low-frequency limit. The first and second terms
are contributions from the spin-down and internal-wave cancelling due to the sidewall
boundary layer, respectively. The spin-down induces damping but does not modify
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the angular frequency. Neglecting the factor f V
(1,1), it induces damping proportional

to the time scale of the spin-down, which is
√

νf H −2 in a dimensional form. The

damping rate due to the sidewall Ekman velocity becomes large as ω
(0)
(1,+1,±1) (hence S)

decreases; however it is important to note that the above equation should be applied
only under condition (3.10); otherwise the structure of the sidewall boundary layer
deviates from the Stokes layer as discussed in § 3.

The above simple limiting cases illustrate that damping of internal waves is due to a
combination of the internal-wave cancelling and a modified spin-down. Interestingly,
the two processes counteract for Kelvin waves. Sub-inertial Kelvin waves are damped
by the spin-down part (see (6.1)) whereas the internal-wave cancelling part tends to
excite the waves (figure 5e).

The roles of the two processes sharply change near S = 0.7, when the frequency
crosses the inertial frequency (figure 5a, e). This is related to the reversal of the radial
Ekman transport at the inertial frequency (figure 2); both the bottom Ekman normal
velocity and the corner-source-induced flows change direction, and so does the vertical
energy flux. For Poincaré waves, both mechanisms lead to wave damping. Unlike
Kelvin waves, the damping rates approach zero in the low-frequency limit (figure
5f ), as Poincaré wave in the limit induces small pressure variation (Antenucci &
Imberger 2001), driving weak boundary-layer flows. Overall, the damping rate
due to the bottom boundary layer is proportional to the corresponding angular
frequencies for S > 0.5, but the damping rates deviate below S ≈ 0.5 for sub- and
super-inertial waves (figure 5c). The bottom Ekman normal velocity also retards
both types of waves (figure 5b; note that ω(0) is negative for Poincaré waves). When
the Burger number is small, the sidewall boundary layer selectively damps radial
mode 1 cyclonic waves (figure 5d ), as they induce strong currents near the sidewall
(see figure 4b).

The internal-wave cancelling and spin-down also modify the modal structure in
different ways (figure 6). The modification caused by the internal-wave cancelling
part due to the bottom boundary layer is negligible when the Burger number is
small but becomes dominant for super-inertial waves (third column in figure 6). For
super-inertial waves, it induces isopycnal displacements and velocities with a phase
lag of 270◦ and 90◦ compared to the parent wave, respectively, in the lower part of
the water column (figure 6s, x ). This results in an intensification of the flow that
delays relative to the isopycnal displacements (figure 6q, v ), similar to internal waves
in non-rotating rectangular basins (figure 3d ).

Unlike the internal-wave cancelling, the spin-down part induces a velocity normal
to the sidewall (fourth column in figure 6), and the interior fluid enters the bottom
corner at r = 1 (see figure 4e). The circulatory flow has a 180◦ phase lag when the
Burger number is small (figure 6d ), but the flow becomes more unidirectional and the
phase lag approaches 270◦ as the wave frequency increases to the inertial frequency
(figure 6i ). These modification tends to slant the crest and trough near the wall
backwards (figures 4a and 6a, f ), and the currents tend to be delayed relative to
the isopycnal displacements. For super-inertial waves, the spin-down part induces
a structure that has a relatively large amplitude and length scale smaller than the
parent wave’s in both the horizontal and vertical (figure 6n, t). This occurs because the
temporally oscillating sinks and sources at the bottom corner may emit internal-wave
rays at super-inertial frequency (Lighthill 1978; Gill 1982). As we seek oscillatory
solutions with a fixed angular frequency, the rays must have a distinct angle and form
a ‘standing wave’ pattern. Intensity of the corner sources and sinks decreases as the
Burger number increases, and the fine structure eventually disappears (figure 6v, y).
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Figure 5. The frequency corrections and damping rates of basin-scale internal waves.
(a) Dispersion relationships of basin-scale internal waves. (b), (c) The first-order correction
to the angular frequencies and damping rates due to the bottom boundary layer, respectively.
(d ) Those due to the sidewall boundary layer (the real and imaginary parts have the same value).
(e), (f ) The damping rates of the fundamental Kelvin wave mode (R1A1 C) and Poincaré wave
mode (R1A1 A) due to the internal-wave cancelling and spin-down, respectively. In (d ), the
dash-dotted line almost coincides with the solid line, and the dashed and dotted lines coincide
with the abscissa. Note that the damping rates in (c) remain finite as S → 0, although they
appear very large due to non-normalization by ω(0). Abbreviations are as follows: R indicates
the radial mode number; A indicates the azimuthal mode number; C, cyclonic; and A, anti-
cyclonic. For plotting purposes ω(1) is divided by f V

(l,l) in (b), (c), (e) and (f ) and by A in (d ).

The sidewall part induces a purely radial velocity, which does not vanish at the
boundary as the interior fluid enters the sidewall boundary layer (fifth column in
figure 6). The velocity phase lag is 270◦, relative to the leading wave for the Stokes
sidewall boundary layer. The correction due to the sidewall Ekman normal velocity
is small for basins with small aspect ratios.

7. Discussion
The results presented in this paper have theoretical and practical limitations.

First, the sidewall-boundary-layer solution is valid only when (3.10) is satisfied.
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By introducing a shallow basin, it is also assumed that O(A2) � S−2B = O(1) in
the equation of vertical motion (3.9e). These conditions are not satisfied in deep
basins and homogeneous basins, and the sidewall-boundary-layer solution needs
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to be modified in such cases. Second, the results are not applicable when wave
frequencies are very close to the inertial frequency (or ω ≈ S−1 in (3.5)–(3.8)), as
the thicker component of the bottom boundary layer becomes comparable to the
total depth when E/S ≈ |ω − S−1| (see (3.5) and figure 1) and the corner boundary
condition (3.15) becomes invalid (appendix D). Third, the first-order correction to the
internal-wave field may have relatively large amplitude with smaller horizontal and
vertical scales when the frequency is close to, but above, the inertial frequency. The
scaling applied in the theory breaks down if the amplitude becomes so large and/or
the structure becomes so fine that the nonlinear terms and/or viscosity in the interior
are no longer negligible. In such a case, the inviscid solution should not be assumed
as the zeroth-order solution. Fourth, the boundary layers are turbulent in reality with
spatially variable turbulent viscosity, which depends on the wave amplitude in general.
This modifies both magnitude and direction of the Ekman transport and induces non-
exponential damping. Fifth, the assumption of a symmetric basin with a flat bottom
and vertical sidewalls excludes some important processes, such as different boundary-
layer structure over the sloping bottom (Thorpe 1987), existence of wave attractors in
a depth-variable basin (Maas & Lam 1995) and concentration and subsequent decay
of internal-wave rays due to critical-wave reflection and internal-wave refraction
(Ivey & Nokes 1989; Drijfhout & Maas 2007).

An important feature of the method used in this paper is that the problem was
separated into the boundary-layer flow, where viscosity enters the force balance, and
the flow in the basin’s interior, where viscous effects may be neglected, by introducing
different length scales characteristic to each problem; the boundary-layer flow affects
the interior only through the Ekman normal velocity. Strictly speaking, the same
method is not applicable to real lakes, as the thickness of the bottom boundary
layer is not determined by the balance between viscous force and unsteady inertia
but by bottom-generated turbulence entraining the stratified fluid from the lake’s
interior over the stratified period (e.g. Lemckert et al. 2004). However, the problems
are similar in the sense that dissipation plays a dominant role only in the boundary
layer; turbulent flow in the well-mixed bottom boundary layer is separated from
the nearly laminar interior flow by stratification suppressing turbulence at the top
of the boundary layer. Therefore, we may still treat flows in lakes in the same
way, considering the turbulent-boundary-layer flow and nearly inviscid interior flow
communicating through the Ekman normal velocity.

Considering the above, the third limitation mentioned earlier may be overcome
in real lake conditions. The well-mixed boundary layer implies that the pressure
within the boundary layer is constant across the layer; so (3.2) still holds. As viscosity
above the boundary layer may be neglected, a free-stress condition is more appropriate
for the boundary condition at the top of the boundary layer:

∂uE

∂z
=

∂vE

∂z
= 0 at Z = (E/S)−1/2hBBL, (7.1)

where hBBL is the thickness of the mixed boundary layer in non-stretched coordinate.
Assuming constant turbulent viscosity, the solution to (3.2) has the form of (3.5), but
the factor exp(−β±Z) needs to be replaced by

cosh(β±(E/S)−1/2(hBBL − z))/ cosh(β± (E/S)−1/2 hBBL), (7.2)

and γbl and γbt given in (3.7) may be obtained by replacing β± by

β± tanh(β± (E/S)−1/2 hBBL). (7.3)
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Using the new definitions of γbl and γbt , other equations apply. Although these changes
are required, this does not modify the magnitude of the Ekman normal velocity
significantly as long as the thickness of the thinner component of the boundary layer
is thin compared to the mixed-bottom-boundary-layer thickness.

The fourth limitation may also be relaxed under some conditions. The amplitude
dependence of the turbulent kinematic viscosity may be neglected if there are currents
and/or waves outside of the boundary layers whose amplitudes (hence turbulence
in the layers) change slowly compared to the period of the wave of interest. This
also allows linear approximation of the bottom shear stress. The vertical variation
of turbulent viscosity affects the Ekman transport through bottom shear stress (see
(1.3)), and this effect may be captured by modifying the linear friction coefficients, γbl

and γbt in (3.8) and (3.15). This requires the magnitude, phase lead and veering angle
of the drag coefficient, which are well known for non-rotating boundary layers (e.g.
Zou 2002) but not for capped oscillating turbulent boundary layers in a stratified
rotating basin; constant turbulent viscosity may be used as a first approximation until
the details become available.

It would be valuable to compare prediction of the theoretical results with the
damping rates of basin-scale internal waves in Lake Kinneret. The comparison is
only qualitative due to the simplified geometry used in the theory, and a comparison
with laboratory experiments by Wake et al. (2005) was not possible because they
used a relatively deep basin with two-layer stratification. Lake Kinneret is located
in northern Israel with the length, width and average depth of 20 km, 10 km and
30 m, respectively (figure 7a). The lake is strongly stratified in summer with the
thermocline located at the depth of 15–20 m, which separates the warm (≈28◦C)
epilimnion from the cool (≈16◦C) hypolimnion (Serruya 1975). The inertial frequency
is 7.8 × 10−5 rad s−1, and the typical Burger number in summer is 0.6 (Antenucci &
Imberger 2001). Diurnal winds in summer resonate with internal waves whose daily
averaged amplitudes stays about 5 m, which appears comparable to the total depth.
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High-frequency internal waves due to wind-shear-induced linear instability are
observed in the lake (Boegman et al. 2003; Gómez-Giraldo et al. 2008), but they
do not extract significant amount of energy from the basin-scale internal waves
(Gómez-Giraldo 2007). High-frequency internal waves due to nonlinear steepening
are not observed in the lake. This may be explained by the time scale for nonlinear
steepening, given by (Horn, Imberger & Ivey 2001)

Ts =
2R

αa0

, (7.4)

where α for vertical mode 1 internal waves is (e.g. Lamb & Yan 1996)

α =
3c1

2H

∫ 0

−H
φ3

1dz∫ 0

−H
φ3

1dz
. (7.5)

Assuming R = 10 km and a0 = 5 m and using φ1 in figure 7(c) (but rescaled as in
Lamb & Yan 1996), we get α = 5.4×10−3, leading to Ts = 9.4 days. Since the damping
times of basin-scale internal waves are a few days (Shimizu & Imberger 2008), the
waves would be almost completely damped before degenerating into high-frequency
waves. In fact, it is shown that linear theory explains the evolution of the basin-scale
internal waves in the lake well (Shimizu & Imberger 2008); so the nonlinear effects
may be neglected as a first approximation.

Use of observed turbulent viscosity within the bottom boundary layer of 10−4

m2 s−1(Yeates & Imberger 2003) yields E = 1.4 × 10−3. Numerical solution of (4.7)
and (4.8) under typical stratification in summer (figure 7b) gives the vertical modes
(figure 7c), leading to f V

(1,1) = 1.5 from (5.5). Using figure 5(c), these values yield

damping rates of 2.0 × 10−6 and 4.4 × 10−6 for the horizontal mode 1 Kelvin and
Poincaré waves, whose typical frequencies in summer are 7.9 × 10−5 and 17.4 ×
10−5 rad s−1, respectively (Shimizu & Imberger 2008). The corresponding estimates
from field data are 6.7×10−6 and 12×10−6 rad s−1, respectively; the predicted damping
rates are in the same order as the estimates from field data. The result is encouraging
considering that simplified geometry and constant viscosity are used in the theory.
Further investigation is required to include the variation of turbulent kinematic
viscosity in the boundary layers and effects of the sloping bottom, which modifies
the boundary-layer dynamics (Thorpe 1987), changes the internal-wave structure
(Maas & Lam 1995) and possibly introduces additional damping mechanisms (e.g.
Ivey & Nokes 1989; Drijfhout & Maas 2007).

8. Conclusions
We have investigated damping rates and the dissipative modal structure of basin-

scale internal waves in continuously stratified rotating circular basins. The solutions
are obtained for the parameter ranges (E/S) � 1, A � 1, EA2 � S3 and B =O(S2)
using a perturbation analysis by incorporating the Ekman normal velocities as the
boundary conditions. The basin-scale internal waves are damped by a combination
of the internal-wave cancelling and spin-down, which tend to counteract each other
for Kelvin waves but tend to reinforce each other for Poincaré waves. In the high-
and low-frequency limits, the Ekman normal velocities modify the modal structure
as expected from previous studies, but when the wave frequency is of the same order
as, but above, the inertial frequency, internal-wave rays emitted from the temporally
oscillating sinks and sources at the bottom corner add a finer structure with a relatively
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large amplitude. The damping rates predicted by the theory showed qualitatively good
agreement with those estimated from field data in a strongly stratified lake.

The first author acknowledges the financial support of the Tokyo Tech Long-term
Overseas Study Support Program. This paper represents Centre for Water Research
reference ED 2201-KS.

Appendix A. Orthogonality of modes in a continuously stratified rotating basin
with arbitrary shape

The orthogonality of modes in a rotating homogeneous basin was shown by
Proudman (1929) and Platzman (1972), which was extended to a layer-stratified
basin by Shimizu et al. (2007). Here, we apply a similar approach to a continuously
stratified rotating basin with arbitrary shape.

Consider a continuously stratified basin with the horizontal boundary at z = 0
located at (x, y) = (xl, yl) and with the bottom at z = zb(x, y), where z is the upward
positive coordinate with origin at the equilibrium surface. The surface boundary
condition is given by (4.3). Assuming influx of fluids at the bottom of qb per unit
plane area (e.g. due to the bottom Ekman normal velocity), the bottom boundary
condition may be written as

−iω
S2

BN2

(
∂p′

∂z

)
b

− ub

∂zb

∂x
− vb

∂zb

∂y
= qb at z = zb, (A 1)

where the vertical velocity w has been related to p′ using (4.1) and the subscript b

denotes a value evaluated at the bottom. If some parts of the lateral boundary are
vertical, we also assume influx of ql per unit height and unit length parallel to the
boundary. Then, the lateral boundary condition is

un̂x + vn̂y = −ql at (x, y) = (xl, yl). (A 2)

Let us add (A 1) multiplied by δ(z − zb) to (4.2) and write the resulting equation and
(2.6c, d ) in a matrix form as

ωMξ = Kξ + fb, (A 3)

where

M =

⎛
⎜⎜⎝

−
(

∂

∂z
+ δ(z − zb)

)(
S2

BN2

∂

∂z

)
0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ , (A 4a)

K = i

⎡
⎢⎢⎢⎢⎢⎣−

⎛
⎜⎜⎝

0
∂zb

∂x

∂zb

∂y
0 0 0

0 0 0

⎞
⎟⎟⎠ δ (z − zb) +

⎛
⎜⎜⎜⎜⎜⎝

0
∂

∂x

∂

∂y
∂

∂x
0 − 1

S
∂

∂y

1

S
0

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦ , (A 4b)

fb = −i

⎛
⎜⎝

qbδ (z − zb)

0

0

⎞
⎟⎠ (A 4c)

are generalized version of M , K and b given by (4.5).
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The matrix operators M and K in (A 3) are Hermitian (or self-adjoint), which
can be shown as follows. First, multiply the left-hand side of (A 3) by the conjugate
transpose of pressure and horizontal velocities that are independent of ξ , denoted with

the superscript + as ξ̄
+

= (p̄′+, ū+, v̄+), from the left, and integrate the expression over
the basin using integration by parts. Neglecting the factor ω, using (4.1) to relate p′ to
w, introducing vertical displacement η = (iω) −1w and applying the surface boundary
condition (4.3), the integral may be written as∫ 0

zb(x)

∫∫ (
ξ+H

Mξ
)
dx dy dz

=

∫ 0

zb(x)

∫∫ (
BN2

S2
η̄+η + ū+u + v̄+v

)
dx dy dz +

∫∫ (
c(0)2η̄+η

)
dx dy, (A 5)

where the superscript H stands for the conjugate transpose and the integrals in terms
of x and y are taken over the basin. Using the above relation, it can be shown that∫ 0

zb(x)

∫∫ (
ξ+H

Mξ
)
dx dy dz =

∫ 0

zb(x)

∫∫ [
(Mξ+)H ξ

]
dx dy dz, (A 6)

which means that the matrix operator on the left-hand side of (A 3) is Hermitian.
Second, multiply the first term on the right-hand side of (A 3) by the conjugate
transpose of ξ+ from the left and integrate over the basin using integration by parts,
yielding∫ 0

zb(x)

∫∫ (
ξ+H

Kξ
)
dx dy dz

= −i

∫∫ [
p̄′+

b ub

∂zb

∂x
+ p̄′+

b vb

∂zb

∂y

]
dx dy

+i

∫ 0

zb(x)

∫∫ [
∂

∂x
(p̄′+u + p′ū+) +

∂

∂y
(p̄′+v + p′v̄+)

]
dx dy dz

−i

∫ 0

zb(x)

∫∫ {[
∂p̄′+

∂x
u +

∂p̄′+

∂y
v + p′

(
∂ū+

∂x
+

∂v̄+

∂y

)]
+

1

S
(ū+v − v̄+u)

}
dx dy dz.

(A 7)

Further, the second term on the right-hand side can be written as

i

∮∫ 0

zb(x)

[
(p̄′+u + p′ū+)n̂x + (p̄′+v + p′v̄+)n̂y

]
dz ds

+i

∫∫ [
(p̄′+

b ub + p′
bū

+
b )

∂zb

∂x
+ (p̄′+

b vb + p′
bv̄

+
b )

∂zb

∂y

]
dx dy, (A 8)

where ds is the length element along the lateral boundary and the integral in the first
term on the right-hand side is taken along the basin’s perimeter. Using the above
relationship and (A 2), (A 7) becomes∫ 0

zb(x)

∫∫
(ξ+H

Kξ ) dx dy dz

= −i

∮∫ 0

zb(x)

(p̄′+ql + p′q̄+
l ) dz ds +

∫ 0

zb(x)

∫∫
[(Kξ+)H ξ ] dx dy dz. (A 9)
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The above equation shows that the matrix operator on the right-hand side of (A 3) is
also Hermitian if ql = 0, satisfying∫ 0

zb(x)

∫∫
(ξ+H

Kξ ) dx dy dz =

∫ 0

zb(x)

∫∫
[(Kξ+)H ξ ] dx dy dz. (A 10)

As both the matrix operators in (A 3) are Hermitian, the homogeneous solutions
of (A 3) under the conditions ql = qb = 0 (hence fb = O) are orthogonal. The
orthogonality relationships can be derived by (i) multiplying (A 3) for the rth mode

by complex conjugate of modal structure of sth mode,
¯̃
ξ (s), and integrating over

the basin, (ii) multiplying (A 3) for the sth mode by complex conjugate of ξ̃ (r) and
integrating over the basin, (iii) subtracting complex conjugate of the latter equation
from the former and (iv) using (A 6) and (A 10) (single modal index is used here, as the
modes in basins with arbitrary geometry are not separable into different horizontal or
vertical modal components in general). The result gives the orthogonal relationships∫ 0

zb(x)

∫∫ (
ξ̃ (s)

H
M ξ̃ (r)

)
dx dy dz = ẽ(r)δr,s, (A 11a)

∫ 0

zb(x)

∫∫ (
ξ̃ (s)

H
K ξ̃ (r)

)
dx dy dz = ω(r)ẽ(r)δr,s . (A 11b)

Using (A 5), it can be seen that ẽ(r) is twice the total energy contained in the mode.
Equation (4.13) correspond to the case with zb = −1.

Once orthogonality of modes (A 11) are shown, completeness of the modal
expansion (4.17) can be shown by following the standard procedure (see e.g. Arfken &
Weber 1995).

In the above, the orthogonality and completeness of inviscid modes in a
continuously stratified basin with variable depth are derived, implicitly assuming the
existence of regular modes associated with discrete natural frequencies. However, in
such a basin, it is shown that regular modes may be absent, and singular eigenfunctions
associated with continuous spectra may appear in the inviscid limit (e.g. Maas & Lam
1995). Further investigations are required to determine whether the theory above is
extendable to eigenfunctions associated with mixed (i.e. discrete plus continuous)
spectra, as in other cases (e.g. Salwen & Grosch 1981).

Appendix B. Horizontal modes in a flat-bottomed circular basin
The oscillatory solutions to (4.10) may be written as (Csanady 1967; Antenucci &

Imberger 2001)

ηw(l,m,n) = c−1
l Gw(l,m,n)e

−inθ , (B 1a)(
uw(l,m,n)

vw(l,m,n)

)
=

cl

ω
(0)
(l,m,n)

2 − S−2

[(
iω(0)

(l,m,n)

−S−1

)
∂Gw(l,m,n)

∂r
+

n

r

(
−iS−1

ω
(0)
(l,m,n)

)
Gw(l,m,n)

]
e−inθ ,

(B 1b)

where w in the superscript indicates wave modes and Gw(l,m,n) (r) is the normalized
radial function defined as

Gw(l,m,n)(r) =
Jn(k(l,m,n)r)

Jn(k(l,m,n))
. (B 2)
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In the above equations, Jn is the Bessel function of the first kind and

k(l,m,n) = c−1
l

√(
ω

(0)
(l,m,n)

2 − S−2

)
(B 3)

is the radial wavenumber (normalized by R). We use Jn throughout and let the
argument be imaginary for sub-inertial waves following Stocker & Imberger (2003);
for sub-inertial waves, Jn becomes the modified Bessel function of the first kind In

by the rule Jn (ix) = inIn (x), where x is a real variable. The natural angular frequency

ω
(0)
(l,m,n) is determined from the lateral boundary condition (Csanady 1967; Antenucci &

Imberger 2001):

ω
(0)
(l,m,n)

∂

∂r
Gw(l,m,n) − S−1 n

r
Gw(l,m,n) = 0 at r = R. (B 4)

This gives infinite number of natural angular frequencies of different radial modes m

( �= 0) for given l and n. (Note that if n> 0, ω(0)
(l,m,n) > 0 for cyclonic waves and ω

(0)
(l,m,n) < 0

for anticyclonic waves, whereas if n< 0, the sign of ω
(0)
(l,m,n) is opposite, guaranteeing

that both +n and −n modes rotate in the same direction. Also note that +n and −n

modes form the conjugate pair that satisfies (4.12).) We prefer to use +m and −m for
cyclonic and anticyclonic waves, respectively, so that (m, n) = (+1, ±1) corresponds
to the fundamental Kelvin wave mode and (m, n) = (−1, ±1) corresponds to the
fundamental Poincaré wave mode. The normalization factor in (4.13a) corresponding
to the choice of the radial function (B 2) is

ẽw(l,m,n) = 2πρKE(l)c
2
l

c−2
l ω

(0)
(l,m,n)

2 − nω
(0)
(l,m,n)

−1
S−1 − n2

ω
(0)
(l,m,n)

2 − S−2
. (B 5)

Although less attention has been paid to it, (4.10) also has steady solutions, which
are necessary for completeness of the modal expansion (4.17). As seen from (4.10),
any form of η(l,m,n) can be a solution when ω

(0)
(l,m,n) = 0 (i.e. degenerate). One of the

natural choices is the Bessel functions (Proudman 1929), and the solutions based on
this choice may be written as

ηg(l,m,n) =
S−1

λ(m,n)c
2
l

Gg(l,m,n) (r) e−inθ , (B 6a)

(
ug(l,m,n)

vg(l,m,n)

)
=

1

λ(m,n)

{(
0
1

)
∂

∂r
Gg(l,m,n) (r)

+
n

r

(
i
0

)
Gg(l,m,n) (r)

}
e−inθ , (B 6b)

where λ(m,n) are the roots of the Bessel function Jn and g in the superscript indicates
geostrophic modes. The radial function may be normalized as

Gg(l,m,n)(r) =
Jn(λ(m,n)r)

Jn(λ(m,n))
for n = 0, (B 7a)

Gg(l,m,n)(r) =
Jn(λ(m,n)r)

Jn−1(λ(m,n))
for n �= 0. (B 7b)
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For n �=0, λ(m,n) is determined from zero-normal-velocity condition at the lateral
boundary,

n

r
Gg(l,m,n) = 0 at r = R, (B 8)

whereas for n= 0, the above condition is automatically satisfied, but λ(m,n) may be
determined from the conservation of mass:

2π

∫ R

0

Gg(l,m,0) (r) rdr = 0. (B 9)

(Note that modal index m for geostrophic modes is always positive in this choice.) The
normalization factor ẽg(l,m,n) corresponding to the choice of radial function (B 7) is

ẽg(l,m,n) = πρKE(l)

[
1 + (Sclλ(m,n))

−2
]
. (B 10)

As the geostrophic modes are steady, it is natural to make ηg(l,m,n), ug(l,m,n) and
vg(l,m,n) real by converting the factor e−inθ in (B 6) into cosine and sine. In this choice,
n is always positive and +m and −m may be used for modes with cosine and sine,
respectively. The conjugate pair (4.12) does not appear for steady modes in this choice
as explained in the text. We merely use the form in (B 6) to simplify mathematical
manipulations.

If the total mass of the basin changes, additional mode that represents spatially
uniform change of η(l,m,n) is required; however, they are irrelevant for our case.

Appendix C. Expressions for ω
(1)
(l,m,n) and b̃(l,m,n)(p,q,r)

The determination of ω
(1)
(l,m,n) and b̃(l,m,n)(p,q,r) is done by rewriting (l, m) and (p, q)

as (l, m, n) and (p, q, r), respectively, in (4.21), substituting (B 1) and (B 6) into the
equation and performing the integrations. Separating as ω

(1)
(l,m,n) in (6.1a), the angular

frequencies are given by

ω
(1)iwc

(l,m,n)

ω
(0)
(l,m,n)

=
f V

(l,l)f
iwc
(l,m,n)

f w,E
(l,m,n)

[
1

2

(
ω

(0)
(l,m,n)

2 − n2
)]

, (C 1a)

ω
(1)sp
(l,m,n)

ω
(0)
(l,m,n)

= −i
f V

(l,l)f
sp

(l,m,n)

f w,E
(l,m,n)

[
n − 1

2

S−1

ω
(0)
(l,m,n)

(
ω

(0)
(l,m,n)

2 − n2
)]

, (C 1b)

ω
(1)sw
(l,m,n)

ω
(0)
(l,m,n)

= A
f sw

(l,m,n)

f w,E
(l,m,n)

[n2], (C 1c)

where f V
(l,l) is defined by (5.5) and

f iwc
(l,m,n) =

iω(0)
(l,m,n)γbl + S−1γbt

ω
(0)
(l,m,n)

2 − S−2
, (C 2a)

f
sp

(l,m,n) =
S−1γbl − iω(0)

(l,m,n)γbt

ω
(0)
(l,m,n)

2 − S−2
, (C 2b)

f sw
(l,m,n) =

iγsw

ω
(0)
(l,m,n)

, (C 2c)

f w,E
(l,m,n) =

ω
(0)
(l,m,n)

2

ω
(0)
(l,m,n)

2 − S−2

⎛
⎝ω

(0)
(l,m,n)

2

c2
l

− n

Sω
(0)
(l,m,n)

− n2

⎞
⎠ . (C 3)
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The expansion coefficients b̃(l,m,n)(p,q,r) need to be calculated separately for the wave
modes and geostrophic modes with n= 0 and n �=0. For the wave modes, we get

b̃w,iwc
(l,m,n)(p,q,r) =

f V
(l,p)f

iwc
(l,m,n)

f w,E
(p,q,r)

ω
(0)
(l,m,n)

ω
(0)
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(0)
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×
[
f w,I

(l,m,n)(p,q,r)
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S−1

ω
(0)
(l,m,n)

− S−1

ω
(0)
(p,q,r)

)]
δr,n, (C 4a)
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w,sp

(l,m,n)(p,q,r) = −i
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(0)
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(0)
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(0)
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×

⎡
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ω
(0)
(p,q,r)

2
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l ω
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(l,m,n)

2
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f w,I
(l,m,n)(p,q,r)S

−1

ω
(0)
(l,m,n)

(
S−1

ω
(0)
(l,m,n)

− S−1

ω
(0)
(p,q,r)

)⎤⎦ δr,n, (C 4b)

b̃w,sw
(l,m,n)(p,q,r) =

Af sw
(l,m,n)
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ω
(0)
(l,m,n)

ω
(0)
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2
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2

⎤
⎦ δl,pδr,n, (C 4c)

where

f w,I
(l,m,n)(p,q,r) =

ω
(0)
(p,q,r)

2

ω
(0)
(p,q,r)
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2
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2
. (C 5)

For the geostrophic modes with n= 0, we get

b̃
g,iwc
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, (C 7)
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For geostrophic modes with n �=0, the results are
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The first and second terms in (C 1b), (C 4b), (C 6b) and (C 9b) correspond to the
corner jet at r = 1 and the Ekman normal velocity for r < 1, respectively.

Appendix D. Flow field around the corner region
This appendix aims to show validity of the corner boundary condition (3.15) in

the limit of small viscosity by numerically investigating detailed flow field around the
bottom-corner region of a flat-bottomed circular basin filled with a viscous fluid.

Numerical solutions of the fundamental-mode internal Kelvin and Poincaré waves
are obtained neglecting non-hydrostatic effects and diffusion of density, to be
consistent with the scaling used in the analytical investigation. The governing
equations for a monochromatic wave with an angular frequency ω may be written as

ωMξ = (K + D) ξ , (D 1)

where the scaling in § 2 is applied with L = R, ω0 = C/R and S = C(f R)−1(as in § 6).
The variables ξ , M and K are defined by (4.5) with wE = 0, and the viscous operator
D is defined as

D = −i
E

S

⎛
⎝0 0 0

0 ∇2 0

0 0 ∇2

⎞
⎠, (D 2)

where the horizontal derivatives in the Laplacian is retained to resolve the sidewall
boundary layers. The no-slip boundary condition is applied at the bottom and
sidewalls. Assuming azimuthal mode 1 waves, we set ξ (r, θ, z) = ξ (r, z)e−iθ and C = c1.
Equation (D1) is discretized in the r–z plane using the control volume method
with a staggard grid (Patankar 1980). Depending on the boundary-layer thicknesses,
80 ∼ 120 and 50 ∼ 100 computational cells are used in the radial and vertical directions,
respectively. The height and width of the cells are increased exponentially from the
bottom and sidewalls, respectively, in order to resolve the boundary layers with at
least 15 cells. Homogeneous solutions to (D 1) are obtained by numerically solving the
resulting matrix equation as an eigenvalue problem. Vertical velocities are calculated
diagnostically from the solutions using (4.1).

The flow field around the corner region under the fundamental-mode sub-inertial
internal Kelvin wave is shown in figure 8(a). The phase corresponds to ωt − θ ≈ 0
in the analytical solution (B 1); so both radial and vertical velocities would be zero
everywhere in the inviscid limit. (The azimuthal velocity above the bottom boundary
layer is into the paper.) In particular, note that the currents in the bottom boundary
layer (below the dotted line in figure 8a) are due to the Ekman transport and that
the sidewall boundary layers are about 100 times thinner than the bottom boundary
layer since A= 0.01. The Ekman transport is clearly fed by the sink flow in the
corner region, as discussed in § 3.3. The width and height of the corner region may
be conveniently defined by a point at which u =w = 0 (filled circle in figure 8a). The
height decreases as ∼(E/S)1/2 (figure 8d ), as indicated by the scaling for the bottom-
boundary-layer thickness in § 3.1. The width follows (E/S)−a for small E/S, where a

decreases with increasing S (a = 0.34, 0.26, 0.17 for S = 0.1, 0.3, 0.6, respectively; note
that the flow regime changes above S > 0.7 as the Kelvin wave becomes super-inertial).
The aspect ratio of the basin, A, does not affect the height and width. Therefore, the
corner region becomes infinitely small in the limit E/S → 0, and (3.15) provides an
adequate corner boundary condition.
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Figure 8. The bottom-corner region in a circular basin with A = 0.01. Flow field under the
fundamental-mode internal (a) Kelvin wave with E/S = 3 × 10−3 and S = 0.3 and (b) Poincaré
wave with E/S = 3 × 10−3 and S = 1.0. The phase corresponds to ωt − θ ≈ 0 in the analytical
solution (B 1), so that both the radial and vertical velocities would be zero everywhere in the
inviscid limit. (The azimuthal velocities above the bottom boundary layer are into and out
of the paper in (a) and (b), respectively.) Arrows show normalized velocity, and the dotted
and dashed lines show contour lines for u =0 and w = 0, respectively. Shading illustrates
the area strongly influenced by the corner jets (horizontal and vertical velocities in (a) and
(b), respectively). The thick solid lines indicate the angle of internal-wave ray, calculated from
(D 3), with the vertical distance corresponding to the bottom-boundary-layer thickness. (c) The
width and (d ) height of the corner region, defined as in (a) and (b). The width is not calculated
for Poincaré waves due to difficulty in objectively determining the value from numerical results.

The flow field under the fundamental-mode super-inertial internal Poincaré wave is
shown in figure 8(b). The phase again corresponds to ωt − θ ≈ 0, and the azimuthal
velocity above the bottom boundary layer is out of the paper. The Ekman transport
leaves the bottom boundary layer in the corner region, forming internal-wave rays
(figure8b) with an angle (Gill 1982)

θr = tan−1

(
ω2 − S−2

BN2S−2A−2 − ω2

)
(D 3)

in the scaled coordinates. It should be noted that the rays become obscure with
increasing E/S, since the currents induced by the rays are relatively insensitive to
E/S (note that both the flow rate out of the corner region and the ray thickness
are proportional to [E/S]1/2) and the Ekman normal velocity increases as ∼(E/S)1/2.
It is not easy to separate the flows induced by the Ekman normal velocity and the
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corner region in the numerical solutions objectively; however, it is physically required
that the width is θ−1

r �′
z, where �′

z is the ray height. Since �′
z scales with the bottom-

boundary-layer height that decreases as ∼(E/S)1/2 (figure 8d ), (3.15) provides a corner
boundary condition in the limit E/S → 0 unless θr � 1 (i.e. the wave frequency is
very close to the inertial frequency).
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Wüest, A., Piepke, G. & Van Senden, D. C. 2000 Turbulent kinetic energy balance as a tool for
estimating vertical diffusivity in wind-forced stratified waters. Limnol. Oceanogr. 45, 1388–1400.

Yeates, Y. & Imberger, J. 2003 Pseudo two-dimensional simulations of internal and buoyancy
fluxes in stratified lakes and reservoirs. Intl J. River Basin Manage. 1, 297–319.

Zou, Q. 2002 An analytical model of wave bottom boundary layers incorporating turbulent
relaxation and diffusion effects. J. Phys. Oceanogr. 32, 2441–2456.


